
CSC 4330 Milestone #4

Team E

Team Leader: Samuel Jones
FrontEnd: Samuel Jones, Kobe Johnson

BackEnd: Abdul Kabbani, Adam Kardorff, Martin Ivanchev

GitHub Link: https://github.com/SamJones329/CSC4330ProjectGroupE

GitHub Projects Link: https://github.com/users/SamJones329/projects/1

https://github.com/SamJones329/CSC4330ProjectGroupE
https://github.com/users/SamJones329/projects/1

Contributions

● Samuel Jones: 100%: Team leader, frontend class diagram, use cases,
user stories, system architecture diagram, frontend backlog, team backlog,
frontend styling, frontend components, initializing frontend project, frontend
test plan, milestone document, frontend APIRequestHandler.

● Kobe Johnson: 100%: Frontend class diagram, use cases, user stories,
system architecture diagram, frontend backlog, team backlog, frontend
components, initializing frontend project, frontend test plan, milestone
document

● Martin Ivanchev: 100%: Database, E-R Diagram, Feature Descriptions,
Use Cases, Use Case Diagram, Class Diagram, System Architecture, User
Stories, Backlog, Milestone Document, Database Test Cases, API
Endpoints, API Endpoints Test Cases, Authentication, Integration

● Abdul Kabbani: 100%: Setup DjangoRest Framework environment, System
Architecture, Class Diagram, Use Cases, User Stories, Django Block
Diagram, Project Backlog, Test Cases for DjangoRest server, Milestone
Document, Authentication.

● Adam Kardorff: 100%: Feature Description, Class Diagram, Use Case
Diagram, User stories, System Architecture Diagram, Use Cases, Project
Backlog, test cases for list, account, and image classes, Milestone
Documents, List class, Account class, Authentication

Milestone 4
FrontEnd Test Cases

● Test case description:Sign Up
○ Input: Valid email, username, and password
○ Condition or function under test:Sign Up
○ Expected Output:Confirm account was created and information reflects what was

inputted
○ Output:Allows user to sign Up

● Test case description:Sign In
○ Input: Valid email or username and password
○ Condition or function under test:Sign In
○ Expected Output: Confirm user was signed in and info populates properly on profile page.
○ Output:Allows user to sign In

● Test case description:Create Listing
○ Input: Listing parameters
○ Condition or function under test:Create Listing
○ Expected Output: Confirm listing was created and info populates properly on listing page
○ Output:Allows user to create a listing

● Test case description:Edit Listing
○ Input: Listing changes
○ Condition or function under test:Edit listing
○ Expected Output: Confirm listing was updated and info populates properly on listing page
○ Output:Allows user to edit listings

● Test case description:Search
○ Input: keyword
○ Condition or function under test:Search
○ Expected Output: Listings containing the keyword
○ Output:Allows the user to search for a specific listing

● Test case description:Change Search Parameters
○ Input: New search parameters
○ Condition or function under test:Change Search Parameters
○ Expected Output: Updated search results
○ Output:Allows user to update their search

● Test case description:Edit Profile
○ Input: New profile settings
○ Condition or function under test:Edit Profile
○ Expected Output: Confirm profile settings updated and info populates properly on profile

page
○ Output: Allows the user to update/edit their profile page

● Test case description:Redirects
○ Not logged in

■ Input: Home page URL
■ Condition or function under test:Redirects not logged in
■ Expected Output: No search bar, sign in and sign up buttons
■ Output:redirects the user to the home page with sign in or sign up button

■ Other Input: Profile page URL or search URL
■ Other Expected Output: Redirect to sign in
■ Other Output:redirects the user to sign in page
■ Other Input: Contact Us URL, Sign In URL, or Sign Up URL
■ Other Expected Output: No redirect
■ Other Output:

○ Logged In
■ Input: Home page URL
■ Condition or function under test:Redirects logged in
■ Expected Output: Search bar and no sign in/up buttons
■ Output:Redirect the user to the home page with featured listings
■ Other Input: profile page URL
■ Other Expected Output: Page populated with specified user info
■ Other Output:Redirects user to their specific profile page.
■ Other Input: Search page
■ Other expected Output: results based on search parameters
■ Other Output:Redirects user to a list with their search parameters.

API-related Tests
• Endpoint /listings/ tests

o Reachability test
Description: Verifies /listings/ endpoint is reachable
Input: HTTP Request, username
Function under test: GetListingsForUser
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /listings/ returns all listings based on a set of query

parameters
Input: HTTP Request, query_params
Function under test: GetListingsByQuery
Expected result: All listings where <query> is contained (CI) in the listing title

returned in JSON format
Result: <matches expected>

o PUT test
Description: Verifies /listings/ updates a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: Given Listing, if found, is correctly updated
Result: <matches expected>

o DELETE test
Description: Verifies /listings/ deletes a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: HTTP_202_NO_CONTENT
Result: <matches expected>

• Endpoint /wishlist/ tests
o Reachability test

Description: Verifies /wishlist/ endpoint is reachable
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /wishlist/ endpoint returns all wishlist listings belonging to

<username>
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: All wishlist listings belonging to <username> returned in JSON

format
Result: <matches expected>

o POST test
Description: Verifies /wishlist/ endpoint can create a wishlist listing
Input: HTTP Request, username, WishlistListing object in JSON format
Function under test: GetWishlistForUser
Expected result: New WishlistListing created
Result: <matches expected>

• Endpoint /users/ tests
o Reachability test

Description: Verifies /users/ endpoint is reachable
Input: HTTP Request
Function under test: AllUsers
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /users/ returns all users
Input: HTTP Request
Function under test: AllUsers
Expected result: All Users returned in JSON format
Result: <matches expected>

o POST test
Description: Verifies /users/ can create a user
Input: HTTP Request, User object in JSON format
Function under test: AllUsers
Expected result: New User created
Result: <matches expected>

Backend Test cases:

Django Rest framework Server Test Cases:

● Test case description: Create a Superuser
o Input: Valid username, email address and password
o Condition or function under test: create_superuser(self, email, password)
o Expected Result: If valid, Json Response confirmation

If invalid, raise serializers.ValidationError as a Json Response
o Output: Json Response with the username

● Test case description: Authentication Login
o Input: Valid username and password
o Condition or function under test:

create_auth_token(sender, instance = None, created = False, **kwargs):
o Expected Result: If valid, Json Response granting access

If invalid,
if not email:

raise ValueError('Users must have an email address')
if not username:

raise ValueError('Users must have a username')
if not password:

raise ValueError('User must have a password')
a Json Response

o Output: Confirmation Json Response granting access

● Test case description: Register User
o Input: Valid username, password, first name, last name, email address
o Condition or function under test:

create_user(self, email, username, password=None)
o Expected Result: If valid, Json Response confirmation

If invalid,
if not email:

raise ValueError('Users must have an email address')
if not username:

raise ValueError('Users must have a username')
if not password:

raise ValueError('User must have a password')
a Json Response

o Output: Json Response

For this milestone, we mainly focused on integrating the Frontend and Backend and polishing
our overall product.

Milestone 3
FrontEnd Test Cases

● Test case description:Sign Up
○ Input: Valid email, username, and password
○ Condition or function under test:Sign Up
○ Expected Output:Confirm account was created and information reflects what was

inputted
○ Output:Allows user to sign Up

● Test case description:Sign In
○ Input: Valid email or username and password
○ Condition or function under test:Sign In
○ Expected Output: Confirm user was signed in and info populates properly on profile page.
○ Output:Allows user to sign In

● Test case description:Create Listing
○ Input: Listing parameters
○ Condition or function under test:Create Listing
○ Expected Output: Confirm listing was created and info populates properly on listing page
○ Output:Allows user to create a listing

● Test case description:Edit Listing
○ Input: Listing changes
○ Condition or function under test:Edit listing
○ Expected Output: Confirm listing was updated and info populates properly on listing page
○ Output:Allows user to edit listings

● Test case description:Search
○ Input: keyword
○ Condition or function under test:Search
○ Expected Output: Listings containing the keyword
○ Output:Allows the user to search for a specific listing

● Test case description:Change Search Parameters
○ Input: New search parameters
○ Condition or function under test:Change Search Parameters
○ Expected Output: Updated search results
○ Output:Allows user to update their search

● Test case description:Edit Profile
○ Input: New profile settings
○ Condition or function under test:Edit Profile
○ Expected Output: Confirm profile settings updated and info populates properly on profile

page
○ Output: Allows the user to update/edit their profile page

● Test case description:Redirects
○ Not logged in

■ Input: Home page URL
■ Condition or function under test:Redirects not logged in
■ Expected Output: No search bar, sign in and sign up buttons
■ Output:redirects the user to the home page with sign in or sign up button

■ Other Input: Profile page URL or search URL
■ Other Expected Output: Redirect to sign in
■ Other Output:redirects the user to sign in page
■ Other Input: Contact Us URL, Sign In URL, or Sign Up URL
■ Other Expected Output: No redirect
■ Other Output:

○ Logged In
■ Input: Home page URL
■ Condition or function under test:Redirects logged in
■ Expected Output: Search bar and no sign in/up buttons
■ Output:Redirect the user to the home page with featured listings
■ Other Input: profile page URL
■ Other Expected Output: Page populated with specified user info
■ Other Output:Redirects user to their specific profile page.
■ Other Input: Search page
■ Other expected Output: results based on search parameters
■ Other Output:Redirects user to a list with their search parameters.

Backend Test cases:

Django Rest framework Server Test Cases:

● Test case description: Create a Superuser
o Input: Valid username, email address and password
o Condition or function under test: create_superuser(self, email, password)
o Expected Result: If valid, Json Response confirmation

If invalid, raise serializers.ValidationError as a Json Response
o Output: Json Response with the username

● Test case description: Authentication Login
o Input: Valid username and password
o Condition or function under test:

create_auth_token(sender, instance = None, created = False, **kwargs):
o Expected Result: If valid, Json Response granting access

If invalid,
if not email:

raise ValueError('Users must have an email address')
if not username:

raise ValueError('Users must have a username')
if not password:

raise ValueError('User must have a password')
a Json Response

o Output: Confirmation Json Response granting access

● Test case description: Register User
o Input: Valid username, password, first name, last name, email address
o Condition or function under test:

create_user(self, email, username, password=None)
o Expected Result: If valid, Json Response confirmation

If invalid,
if not email:

raise ValueError('Users must have an email address')
if not username:

raise ValueError('Users must have a username')
if not password:

raise ValueError('User must have a password')
a Json Response

o Output: Json Response

● Test case description: Page Request - View listing for user
o Input: (self, request, username)
o Condition or function under test: get(self, request)
o Expected Result: Json Response if valid

Bad request, if invalid
o Output: Json Response

● Test case description: Post Request - Create listing for user
o Input: (self, request, username, title)
o Condition or function under test: Post(self, request, username, title)
o Expected Result: If valid, Json Response HTTP_201_Created

If invalid, Json Response HTTP_400_BAD REQUEST
o Output: Json Response HTTP_201_Created

● Test case description: Put Request - Edit listing for user
o Input: (self, request, username, title)
o Condition or function under test: put(self, request, username, title)
o Expected Result: If valid, HTTP_Listing created

If invalid, HTTP_400_BAD_REQUEST
o Output: Json Response HTTP_201_Created

● Test case description: Delete Request - Delete listing for user
o Input: (self, request, username, title)
o Condition or function under test: delete(self, request, username, title)
o Expected Result: If valid, HTTP_Listing Deleted

If invalid, HTTP_400_BAD_REQUEST
o Output: Json Response HTTP_DELETED

Database-related Tests
• Setup Test

o Description: Verifies correct creation of database and initial tables.
o Input: NONE
o Function under test: Server setup
o Expected Result: columbuslist database created with four tables (Users, Listings,

Wishlists, Images)
o Result: <matches expected>

• addUser() Test
o Description: Verifies a user can be correctly entered in the Users table.
o Input: username and password
o Function under test: addUser
o Expected Result: User entry created and correctly inserted into Users table
o Result: <matches expected>

• addListingForUser() Test
o Description: Verifies a listing can be corrected entered in the Listings table
o Input: title, description, username, price, and contact
o Function under test: addListingForUser
o Expected Result: Listing entry correctly inserted into Listings table
o Result: <matches expected>

• addWishlistListingForUser() Test
o Description: Verifies a wishlist listing can be corrected entered in the Wishlists table
o Input: listingID and username
o Function under test: addWishlistListingForUser
o Expected Result: Wishlist entry correctly inserted into Wishlists table
o Result: <matches expected>

• addImageForListing() Test
o Description: Verifies an image can be added to the Images table
o Input: url and listingID
o Function under test: addImageForListing
o Expected Result: Image entry correctly inserted into Images table
o Result: <unimplemented functionality>

• getListingsForUser() Test
o Description: Verifies a specific user’s listings can be retrieved
o Input: username
o Function under test: getListingsForUser
o Expected Result: all listings with given username attribute returned
o Result: <matches expected>

• getWishlistListingsForUser() Test
o Description: Verifies a specific user’s wishlist listings can be retrieved
o Input: username
o Function under test: getWishlistListingsForUser
o Expected Result: all wishlist listings with given username attribute returned

o Result: <matches expected>
• getImagesForListing() Test

o Description: Verifies a listing’s images can be retrieved
o Input: listingID
o Function under test: getImagesForListing
o Expected Result: all images with given listingID attribute returned
o Result: <unimplemented functionality>

API-related Tests
• Endpoint /listings/ tests

o Reachability test
Description: Verifies /listings/ endpoint is reachable
Input: HTTP Request
Function under test: AllListings
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /listings/ returns all listings
Input: HTTP Request
Function under test: AllListings
Expected Result: All listings returned in JSON format
Result: <matches expected>

o POST test
Description: Verifies /listings/ creates a listing
Input: HTTP Request, Listing object in JSON format
Function under test: AllListings
Expected Result: New Listing created
Result: <matches expected>

• Endpoint /listings/<username> tests
o Reachability test

Description: Verifies /listings/<username> endpoint is reachable
Input: HTTP Request, username
Function under test: GetListingsForUser
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /listings/<username> returns all listings belonging to

<username>
Input: HTTP Request, username
Function under test: GetListingsForUser
Expected Result: All listings belonging to <username> returned in JSON format
Result: <matches expected>

• Endpoint /listingsquery/<query>/ tests
o Reachability test

Description: Verifies /listingsquery/<query>/ endpoint is reachable
Input: HTTP Request, query
Function under test: GetListingsByQuery
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test

Description: Verifies /listingsquery/<query>/ returns all listings where <query> is
contained (case insensitive) in the listing title

Input: HTTP Request, query
Function under test: GetListingsByQuery
Expected result: All listings where <query> is contained (CI) in the listing title

returned in JSON format
Result: <matches expected>

• Endpoint /listings/<username>/<title>/ tests
o Reachability test

Description: Verifies /listings/<username>/<title>/ endpoint is reachable
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o PUT test
Description: Verifies /listings/<username>/<title>/ updates a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: Given Listing, if found, is correctly updated
Result: <matches expected>

o DELETE test
Description: Verifies /listings/<username>/<title>/ deletes a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: HTTP_202_NO_CONTENT
Result: <matches expected>

• Endpoint /wishlist/<username>/ tests
o Reachability test

Description: Verifies /wishlist/<username>/ endpoint is reachable
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /wishlist/<username>/ endpoint returns all wishlist listings

belonging to <username>
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: All wishlist listings belonging to <username> returned in JSON

format
Result: <matches expected>

o POST test
Description: Verifies /wishlist/<username>/ endpoint can create a wishlist listing
Input: HTTP Request, username, WishlistListing object in JSON format
Function under test: GetWishlistForUser
Expected result: New WishlistListing created
Result: <matches expected>

• Endpoint /users/ tests
o Reachability test

Description: Verifies /users/ endpoint is reachable
Input: HTTP Request
Function under test: AllUsers
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>

o GET test
Description: Verifies /users/ returns all users

Input: HTTP Request
Function under test: AllUsers
Expected result: All Users returned in JSON format
Result: <matches expected>

o POST test
Description: Verifies /users/ can create a user
Input: HTTP Request, User object in JSON format
Function under test: AllUsers
Expected result: New User created
Result: <matches expected>

Listing, Account, and Image class test cases:

Listing class tests:

· Constructor

o Input: listing title, price, contact required. Description, Images, Title Tags are optional
inputs

o Condition or function under test: creating listing object

o Expected output: All inputs are properly saved, if a required field is blank there is an error,
if an optional field is blank nothing happens

· getTitle()

o input: none

o Condition or function under test: get Title

o expected output: title of listing

o output: allows the title of a listing to be retrieved

· changeTitle(str)

o input: new title of listing

o Condition or function under test: change Title

o expected output: confirmation that the title was changed

o output: allows the title of a listing to be changed

· getDescription():

o input: none

o Condition or function under test: get Description

o expected output: description of listing

o output: allows the description of a listing to be retrieved

· changeDescription(str):

o input: new description of listing

o Condition or function under test: change description

o expected output: confirmation that the description was changed

o output: allows the description of a listing to be changed

· getImages()

o input: none

o Condition or function under test: get images

o expected output: image of listing

o output: allows the images of a listing to be retrieved

· addImages(Listing[])

o input: list of images to add to listing

o Condition or function under test: add Images

o expected output: confirmation that the images were added

o output: allows images to be added to the listing

· removeImages(Listing[])

o input: list of images to remove from listing

o Condition or function under test: remove images

o expected output: confirmation that the images were removed

o output: allows images to be removed from the listing

· getPrices()

o input: none

o Condition or function under test: get Prices

o expected output: price of listing

o output: allows the price of a listing to be retrieved

· changePrices(str)

o input: price of listing

o Condition or function under test: change prices

o expected output: confirmation that the price was changed

o output: allows the price of a listing to be changed

· getContact()

o input: none

o Condition or function under test: get contact

o expected output: contact info for seller of listing

o output: allows the contact of a listing to be retrieved

· changeContact(str)

o input: contact info for of listing

o Condition or function under test: change contact

o expected output: confirmation that the contact info was changed

o output: allows the contact of a listing to be changed

· getTags()

o input: none

o Condition or function under test: get tags

o expected output: tags of the listing

o output: allows the tags of a listing to be retrieved

· addTags(str[])

o input: tags to be added to listing

o Condition or function under test: add Tags

o expected output: confirmation that the tags were added

o output: allows tags to be added to the listing

· removeTags(str[])

o input: tags to be added to listing

o Condition or function under test: remove Tags

o expected output: confirmation that the tags were removed

o output: allows tags to be removed from the listing

Account class tests:

· Constructor

o Input: Username and password required for account.

o Condition or function under test: constructor for account object

o Expected output: Username and password properly saved

o output: allows the creation of account objects

· getUsername()

o input: none

o Condition or function under test: get username

o Expected output: username of account

o output: allows the username of an account to be retrieved

· getListings()

o input: none

o Condition or function under test: get Listings

o Expected output: all active listings posted by account

o output: allows the Listings of an account to be retrieved

· getWishlist()

o input: none

o Condition or function under test: get Wishlist

o Expected output: All listings in the accounts wishlist

o output: allows the wishlist of an account to be retrieved

· addToWishlist(Listing)

o input: listing to be added to wishlist

o Condition or function under test: add to wishlist

o expected output: confirmation that listing was added

o output: allows listings to be added to an accounts wishlist

· removeFromWishlist(Listing)

o input: listing to be removed from wishlist

o Condition or function under test: remove from wishlist

o expected output: confirmation that listing was removed

o output: allows listings to be removed from an accounts wishlist

· changePassword(str)

o input: new password to account

o Condition or function under test: change password

o output: confirmation password was changed

o output: allows the password of an account to be changed

Image class tests:

· Constructor:

o Input: filename of image

o Condition or function under test: Constructor

o Expected output: same filename as input

o output: allows the creation of an Image object

Use Case Diagram:

Feature Descriptions

Admin:

● As an admin, I want to be able to delete users.
● As an admin, I want to delete listing that violate school policies
● As an admin, I want to be able to edit tags, images, and the description of

listings
● As an admin, I want to be able to delete users and listings to ensure that

students follow the student code of conduct.

Buyer

● As a potential buyer, I want to be able to view all listings for sale
● As a potential buyer, I want to add listings to my wishlist if they interest me
● As a potential buyer, I want to view all listings in my wishlist
● As a buyer, I want to purchase items from a listing if it is still available
● As a buyer, I want to be notified of any price changes for listings in my

wishlist
● As a buyer, I want to be able to view relatively high-resolution images of

products to be able to tell the condition of the item.
● As a buyer, I want to be able to perform complex search and sort

operations on available listings so I can find exactly what I am looking for.

Seller

● As a user wanting to sell an item, I want to create a listing for my item
● As a seller, I want to edit and customize the title, tags, and description of

my listings
● As a seller, I want to post pictures of the item I am selling
● As a seller, I want to edit the price of my listing after its posted
● As a seller, I want to remove listings I have made
● As a seller, I want to choose what contact information is visible to potential

buyers
● As a seller, I want to upload images with a relatively high-resolution so

buyers can clearly see what I’m selling.

All users

● As a user, I want to log in if I know the correct password
● As a user, I want to view my account information
● As a user, I want to edit my account information
● As a current user, I want to delete my account

● As a new user, I want to create a new account
● As a user, I want to be able to visit this website from any modern browser

(Firefox, Chromium based browsers, etc.) so I don’t have to worry about
browser compatibility.

● As a user, I want to be confident that the other users I interact with are not
looking to scam me.

● As a user, I want a reliable website that won’t crash constantly
● As a user, I want to be able to use this website from any modern computer

without issues.

Project Backlog

Milestone 2
Feature Description:

Buyer

● As a potential buyer, I want to be able to view all listings for sale
● As a potential buyer, I want to add listings to my wishlist if they interest me
● As a potential buyer, I want to view all listings in my wishlist
● As a potential buyer, I want to be able to filter and search for listings
● As a buyer, I want to purchase items from a listing if it is still available
● As a buyer, I want to be notified of any price changes for listings in my

wishlist

Seller

● As a user wanting to sell an item, I want to create a listing for my item
● As a seller, I want to edit and customize the title, tags, and description of

my listings
● As a seller, I want to post pictures of the item I am selling
● As a seller, I want to edit the price of my listing after its posted
● As a seller, I want to remove listings I have made
● As a seller, I want to choose what contact information is visible to potential

buyers

All users

● As a user, I want to log in if I know the correct password
● As a user, I want to view my account information
● As a user, I want to edit my account information
● As a current user, I want to delete my account
● As a new user, I want to create a new account

Class Diagram:

Use Case Diagram:

Entity-Relationship Diagram:

Preliminary Database Test Cases:

Preliminary Django Rest framework Server Test Cases:

● Test case description: Authentication Login
o Input: Valid username and password
o Condition or function under test: IsAuthenticated(username, password)
o Expected Result: Access Granted or Access Denied
o Output: Confirmation Json Response

● Test case description: Page Request
o Input: Valid username and password
o Condition or function under test: get(self, request)
o Expected Result: Json Response if valid

Bad request, if invalid
o Output: Json Response

● Test case description: Page Request - View listing for user
o Input: (self, request, username)
o Condition or function under test: get(self, request)
o Expected Result: Json Response if valid

Bad request, if invalid
o Output: Json Response

● Test case description: Post Request - Create listing for user
o Input: (self, request, username, title)
o Condition or function under test: Post(self, request, username, title)
o Expected Result: If valid, Json Response HTTP_201_Created

If invalid, Json Response HTTP_400_BAD REQUEST
o Output: Json Response HTTP_201_Created

● Test case description: Put Request - Edit listing for user
o Input: (self, request, username, title)
o Condition or function under test: put(self, request, username, title)
o Expected Result: If valid, HTTP_Listing created

If invalid, HTTP_400_BAD_REQUEST
o Output: Json Response HTTP_201_Created

● Test case description: Delete Request - Delete listing for user
o Input: (self, request, username, title)
o Condition or function under test: delete(self, request, username, title)
o Expected Result: If valid, HTTP_Listing Deleted

If invalid, HTTP_400_BAD_REQUEST
o Output: Json Response HTTP_DELETED

Preliminary Frontend Test Cases

● Test case description:Sign Up
○ Input: Valid email, username, and password
○ Condition or function under test:Sign Up
○ Expected Output:Confirm account was created and information reflects what was

inputted
● Test case description:Sign In

○ Input: Valid email or username and password
○ Condition or function under test:Sign In
○ Expected Output: Confirm user was signed in and info populates properly on profile page.

● Test case description:Create Listing
○ Input: Listing parameters
○ Condition or function under test:Create Listing
○ Expected Output: Confirm listing was created and info populates properly on listing page

● Test case description:Edit Listing
○ Input: Listing changes
○ Condition or function under test:Edit listing
○ Expected Output: Confirm listing was updated and info populates properly on listing page

● Test case description:Search
○ Input: keyword
○ Condition or function under test:Search
○ Expected Output: Listings containing the keyword

● Test case description:Change Search Parameters
○ Input: New search parameters
○ Condition or function under test:Change Search Parameters
○ Expected Output: Updated search results

● Test case description:Edit Profile
○ Input: New profile settings
○ Condition or function under test:Edit Profile
○ Expected Output: Confirm profile settings updated and info populates properly on profile

page
● Test case description:Redirects

○ Not logged in
■ Input: Home page URL
■ Condition or function under test:Redirects not logged in
■ Expected Output: No search bar, sign in and sign up buttons
■ Other Input: Profile page URL or search URL
■ Other Expected Output: Redirect to sign in
■ Other Input: Contact Us URL, Sign In URL, or Sign Up URL
■ Other Expected Output: No redirect

○ Logged In
■ Input: Home page URL
■ Condition or function under test:Redirects logged in
■ Expected Output: Search bar and no sign in/up buttons
■ Other Input: profile page URL
■ Other Expected Output: Page populated with specified user info
■ Other Input: Search page
■ Other expected Output: results based on search parameters

Milestone 1

User Stories:

Buyer

Epic: As a Columbus University student, I want to buy items from fellow students so that I can
get cheap stuff locally and with accountability.

● As a ColumbusList buyer, I want the ability to save listings to a wishlist for quick access at a later
time.

● As a user with a wishlist, I want to be notified of any price changes to listings in my wishlist.
● As a buyer, I want to be able to search listings for specific terms so that I can look for particular

items.
● As a buyer, I want to be able to see recent listings when I go on the site so that I can easily see if

something I want has been posted to be the first to try to purchase it.
● As a buyer, I want to be able to filter my searches by price and tag so that I can minimize time

wasted looking at irrelevant listings and find what I want more quickly.

Seller

Epic: As a Columbus University student, I want to sell items to fellow students so I can get rid of
things I don’t want and make money safely.

● As a Columbus University student looking to sell items and services, I want the ability to add a
sell listing advertising my item or service.

● As a user making a sell listing, I want the ability to add a title to my listing to quickly describe the
item or service I want to sell.

● As a user making a sell listing, I want the ability to add a description to my listing to describe in
detail the item or service I want to sell.

● As a user making a sell listing, I want the ability to add images to my listing to visually advertise
my item or service.

● As a user making a sell listing, I want the ability to add a price to my listing to inform potential
buyers of my required compensation.

● As a user making a sell listing, I want the ability to add contact information to my listing so that
potential buyers can let me know of their interest in my item or service.

● As a user making a sell listing, I want the ability to add tags to my listing to improve the visibility
of my listing and help potential buyers find what they are looking for quicker.

● As a ColumbusList user making a listing, I want to be able to edit all aspects of my listing after it
has been posted.

System architecture:

Project and Sprint Backlogs

Tech details:
➔ The DatabaseManager interacts with a MySQL database. MySQL was chosen as the

database technology due to its fast performance, programmer-friendly connection
capability in Python through the mysql.connection framework, and external access
capability for easy verification and modification of database state. Using this database,
we can store the accounts of ColumbusList users, their listings, their wishlist listings, and
the images associated with those listings.

➔ MySQL - A SQL database management system for implementing a relational database.
➔ MySQL Connector/Python - A self contained Python driver for communicating with

MySQL servers.
➔ Django - A python web framework based on the model-view-template architecture.
➔ Django REST Framework - A python toolkit for building web APIs in Django.
➔ React.js - A declarative, component-based front-end library/framework for providing

views based on application state and which is meant to be integrable into any project.
➔ React Router - A client side router for use with React.js.
➔ Node.js - A JavaScript runtime built on Chrome’s V8 JavaScript Engine. Used for

development of Frontend.
➔ TypeScript - Strict syntactical superset of JavaScript and adds optional static typing to

the language. TypeScript is designed for the development of large applications and
trans-compiles to JavaScript.

➔ Sassy CSS - CSS language extension
➔ Font Awesome - Icon font

Tools:
➔ Google Drive - Online storage for we use for storing milestone deliverables
➔ Discord - VoIP, direct messaging, and content distribution platform we use for sharing

information and virtual meetings/correspondence
➔ Figma - Web-based design software we use for frontend design and whiteboarding
➔ Lucid Chart - Online tool for creating diagrams such as ER, use case, and class
➔ GitHub - Remote service for software development and version control we use for

storing code repository
➔ VS Code - Editor/IDE used for development

