CSC 4330 Milestone #4
Team E

Team Leader: Samuel Jones
FrontEnd: Samuel Jones, Kobe Johnson
BackEnd: Abdul Kabbani, Adam Kardorff, Martin Ivanchev

GitHub Link: https://github.com/SamJones329/CSC4330ProjectGroupE

GitHub Projects Link: https://github.com/users/SamJones329/projects/1

https://github.com/SamJones329/CSC4330ProjectGroupE
https://github.com/users/SamJones329/projects/1

Contributions

Samuel Jones: 100%: Team leader, frontend class diagram, use cases,
user stories, system architecture diagram, frontend backlog, team backlog,
frontend styling, frontend components, initializing frontend project, frontend
test plan, milestone document, frontend APIRequestHandler.

Kobe Johnson: 100%: Frontend class diagram, use cases, user stories,
system architecture diagram, frontend backlog, team backlog, frontend
components, initializing frontend project, frontend test plan, milestone
document

Martin lvanchev: 100%: Database, E-R Diagram, Feature Descriptions,
Use Cases, Use Case Diagram, Class Diagram, System Architecture, User
Stories, Backlog, Milestone Document, Database Test Cases, API
Endpoints, APl Endpoints Test Cases, Authentication, Integration

Abdul Kabbani: 100%: Setup DjangoRest Framework environment, System
Architecture, Class Diagram, Use Cases, User Stories, Django Block
Diagram, Project Backlog, Test Cases for DjangoRest server, Milestone
Document, Authentication.

Adam Kardorff: 100%: Feature Description, Class Diagram, Use Case
Diagram, User stories, System Architecture Diagram, Use Cases, Project
Backlog, test cases for list, account, and image classes, Milestone
Documents, List class, Account class, Authentication

Milestone 4

FrontEnd Test Cases

e Test case description:Sign Up
o Input: Valid email, username, and password
o Condition or function under test:Sign Up
o Expected Output:Confirm account was created and information reflects what was
inputted
o Output:Allows user to sign Up
e Test case description:Sign In
Input: Valid email or username and password
Condition or function under test:Sign In
Expected Output: Confirm user was signed in and info populates properly on profile page.
Output:Allows user to sign In
e Test case description:Create Listing
Input: Listing parameters
Condition or function under test:Create Listing
Expected Output: Confirm listing was created and info populates properly on listing page
Output:Allows user to create a listing
o Test case description:Edit Listing
Input: Listing changes
Condition or function under test:Edit listing
Expected Output: Confirm listing was updated and info populates properly on listing page
Output:Allows user to edit listings
e Test case description:Search
Input: keyword
Condition or function under test:Search
Expected Output: Listings containing the keyword
Output:Allows the user to search for a specific listing
o Test case description:Change Search Parameters
Input: New search parameters
Condition or function under test:Change Search Parameters
Expected Output: Updated search results
Output:Allows user to update their search
e Test case description:Edit Profile
o Input: New profile settings
o Condition or function under test:Edit Profile
o Expected Output: Confirm profile settings updated and info populates properly on profile
page
o Output: Allows the user to update/edit their profile page
e Test case description:Redirects
o Not logged in
m Input: Home page URL
m Condition or function under test:Redirects not logged in
m Expected Output: No search bar, sign in and sign up buttons
m Outputredirects the user to the home page with sign in or sign up button

o
o
(¢]
(¢]
(0]
(0]
(0]
(0]
(e]
o
(¢]
(¢]
(0]
(0]
(0]
(0]

(0]
o
(¢]
(¢]

Other Input: Profile page URL or search URL
Other Expected Output: Redirect to sign in
Other Output:redirects the user to sign in page
Other Input: Contact Us URL, Sign In URL, or Sign Up URL
Other Expected Output: No redirect

m Other Output:
o Logged In

m Input: Home page URL
Condition or function under test:Redirects logged in
Expected Output: Search bar and no sign in/up buttons
Output:Redirect the user to the home page with featured listings
Other Input: profile page URL
Other Expected Output: Page populated with specified user info
Other Output:Redirects user to their specific profile page.
Other Input: Search page
Other expected Output: results based on search parameters
Other Output:Redirects user to a list with their search parameters.

APl-related Tests

. Endpoint /listings/ tests
o] Reachability test
Description: Verifies /listings/ endpoint is reachable
Input: HTTP Request, username
Function under test: GetListingsForUser
Expected result: No HTTP_404_NOT_FOUND
Result: <matches expected>
o] GET test
Description: Verifies /listings/ returns all listings based on a set of query
parameters
Input: HTTP Request, query_params
Function under test: GetListingsByQuery
Expected result: All listings where <query> is contained (Cl) in the listing title
returned in JSON format
Result: <matches expected>
o] PUT test
Description: Verifies /listings/ updates a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: Given Listing, if found, is correctly updated
Result: <matches expected>
o] DELETE test
Description: Verifies /listings/ deletes a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: HTTP_202_NO_CONTENT
Result: <matches expected>
. Endpoint /wishlist/ tests
o] Reachability test

Description: Verifies /wishlist/ endpoint is reachable
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: No HTTP_404 _NOT_FOUND
Result: <matches expected>
o] GET test
Description: Verifies /wishlist/ endpoint returns all wishlist listings belonging to

<username>

Input: HTTP Request, username

Function under test: GetWishlistForUser

Expected result: All wishlist listings belonging to <username> returned in JSON
format

Result: <matches expected>

o] POST test
Description: Verifies /wishlist/ endpoint can create a wishlist listing
Input: HTTP Request, username, WishlistListing object in JSON format
Function under test: GetWishlistForUser
Expected result: New WishlistListing created
Result: <matches expected>

. Endpoint /users/ tests

o] Reachability test
Description: Verifies /users/ endpoint is reachable
Input: HTTP Request
Function under test: AllUsers
Expected result: No HTTP_404 NOT_FOUND
Result: <matches expected>

o] GET test
Description: Verifies /users/ returns all users
Input: HTTP Request
Function under test: AllUsers
Expected result; All Users returned in JSON format
Result: <matches expected>

o] POST test
Description: Verifies /users/ can create a user
Input: HTTP Request, User object in JSON format
Function under test: AllUsers
Expected result: New User created
Result: <matches expected>

Backend Test cases:

Django Rest framework Server Test Cases:

o Test case description: Create a Superuser
o Input: Valid username, email address and password
o Condition or function under test: create _superuser(self, email, password)
o Expected Result: If valid, Json Response confirmation
If invalid, raise serializers.ValidationError as a Json Response
Output: Json Response with the username

o

e Test case description: Authentication Login
o Input: Valid username and password
o Condition or function under test:
create auth token(sender, instance = None, created = False, **kwargs):
o Expected Result: If valid, Json Response granting access
If invalid,
if not email:
raise ValueError('Users must have an email address')
if not username:
raise ValueError('Users must have a username')
if not password:
raise ValueError('"User must have a password')
a Json Response
o Output: Confirmation Json Response granting access

e Test case description: Register User
o Input: Valid username, password, first name, last name, email address
o Condition or function under test:
create user(self, email, username, password=None)
o Expected Result: If valid, Json Response confirmation
If invalid,
if not email:
raise ValueError('Users must have an email address')
if not username:
raise ValueError('Users must have a username')
if not password:
raise ValueError('"User must have a password')
a Json Response

0 Output: Json Response

Home About Signln SignUp

Welcome to

Columbus List

Sign In Sign Up

For this milestone, we mainly focused on integrating the Frontend and Backend and polishing
our overall product.

© Create User Stories

© Create Basic System Architecture
© Create SQL database

© Create Template Django REST Framework Project

© Add Node.js and Reactjs project in subfolder

@ Create basic database component

@ Create basic frontend router component

@ Create basic Ul components (search bar/filters, listing, profile display. nav bar)
@ Create class diagram

© Create ER diagram for database

@ Create styling for basic Ul components

@ Create additional Ul components and subcomponents
© Design documents

© Create Requirements Specification documents

© Design frontend test plans

© Design backend test plans

© Create use cases

© Initiate Django Rest Framework

© Django Rest Framework - Data Base Migrations

© Create use case diagram

© Design AP
© Create dummy frontend API handler to test Ul components
© Create Listing Class
24 © Create Account Class
© Create Image Class
© Pagination in DRF
© Add end-points for our framework
© Flesh out Ul to have full functionality
© Refine styling
© start implementation of test cases
© start implementation of authentication
© Startimplementing real APl handler

© Refine test cases

© Update dass diagram

© Implement search functionality

© Implement search filtering functionality

© Implement listing preview

© Implement listing page

© Implement contact form
© Implement sign in form

© Implement sign up form

© Implement profile page

© Define Serializers for DjangoRest Framework
© Write Views for our DjangoRest Framework
© Write up API URLS in DjangoRest
© User Token Authentication

© [DB] Implement tags

© [DB] Implement test cases for tags and images

© [SearchyFilter] filter by tags

© [Search/Filter] filter by username:

© [Search/Filter] combination filtering listings by title, tags, and usemame
® Merge authentication branch with APl endpoints branch

© Connect frontend and backend components for full system testing

© Implement functionality of forms

@ integrate front-end with back-end api

@ further implement front-end test cases
© further refine styling

© implement front-end session storing

© integrate image uploading into front-end
© work on pagination in search resuits

© [API] Edit views to take parameters from Request and not from URL

Milestone 3

FrontEnd Test Cases

e Test case description:Sign Up
o Input: Valid email, username, and password
o Condition or function under test:Sign Up
o Expected Output:Confirm account was created and information reflects what was
inputted
o Output:Allows user to sign Up
e Test case description:Sign In
Input: Valid email or username and password
Condition or function under test:Sign In
Expected Output: Confirm user was signed in and info populates properly on profile page.
Output:Allows user to sign In
e Test case description:Create Listing
Input: Listing parameters
Condition or function under test:Create Listing
Expected Output: Confirm listing was created and info populates properly on listing page
Output:Allows user to create a listing
o Test case description:Edit Listing
Input: Listing changes
Condition or function under test:Edit listing
Expected Output: Confirm listing was updated and info populates properly on listing page
Output:Allows user to edit listings
e Test case description:Search
Input: keyword
Condition or function under test:Search
Expected Output: Listings containing the keyword
Output:Allows the user to search for a specific listing
o Test case description:Change Search Parameters
Input: New search parameters
Condition or function under test:Change Search Parameters
Expected Output: Updated search results
Output:Allows user to update their search
e Test case description:Edit Profile
o Input: New profile settings
o Condition or function under test:Edit Profile
o Expected Output: Confirm profile settings updated and info populates properly on profile
page
o Output: Allows the user to update/edit their profile page
e Test case description:Redirects
o Not logged in
m Input: Home page URL
m Condition or function under test:Redirects not logged in
m Expected Output: No search bar, sign in and sign up buttons
m Outputredirects the user to the home page with sign in or sign up button

o
o
(¢]
(¢]
(0]
(0]
(0]
(0]
(e]
o
(¢]
(¢]
(0]
(0]
(0]
(0]

(e]
o
(¢]
(¢]

Other Input: Profile page URL or search URL
Other Expected Output: Redirect to sign in
Other Output:redirects the user to sign in page
Other Input: Contact Us URL, Sign In URL, or Sign Up URL
Other Expected Output: No redirect

m Other Output:
o Logged In

m Input: Home page URL
Condition or function under test:Redirects logged in
Expected Output: Search bar and no sign in/up buttons
Output:Redirect the user to the home page with featured listings
Other Input: profile page URL
Other Expected Output: Page populated with specified user info
Other Output:Redirects user to their specific profile page.
Other Input: Search page
Other expected Output: results based on search parameters
Other Output:Redirects user to a list with their search parameters.

Backend Test cases:

Django Rest framework Server Test Cases:

e Test case description: Create a Superuser
o Input: Valid username, email address and password
o Condition or function under test: create_superuser(self, email, password)
o Expected Result: If valid, Json Response confirmation
If invalid, raise serializers.ValidationError as a Json Response
o Output: Json Response with the username

e Test case description: Authentication Login
o Input: Valid username and password
o Condition or function under test:
create_auth token(sender, instance = None, created = False, **kwargs):
o Expected Result: If valid, Json Response granting access
If invalid,
if not email:
raise ValueError('Users must have an email address')
if not username:
raise ValueError('Users must have a username')
if not password:

raise ValueError('User must have a password')
a Json Response
o Output: Confirmation Json Response granting access

o Test case description: Register User
o Input: Valid username, password, first name, last name, email address
o Condition or function under test:
create_user(self, email, username, password=None)
o Expected Result: If valid, Json Response confirmation
If invalid,
if not email:
raise ValueError('Users must have an email address')
if not username:
raise ValueError('"Users must have a username')
if not password:
raise ValueError('User must have a password')
a Json Response

o Output: Json Response

o Test case description: Page Request - View listing for user
o Input: (self, request, username)
o Condition or function under test: get(self, request)
o Expected Result: Json Response if valid
Bad request, if invalid
o Output: Json Response

o Test case description: Post Request - Create listing for user
o Input: (self, request, username, title)
o Condition or function under test: Post(self, request, username, title)
o Expected Result: If valid, Json Response HTTP 201 Created
If invalid, Json Response HTTP_400 BAD REQUEST
o Output: Json Response HTTP 201 Created

e Test case description: Put Request - Edit listing for user
o Input: (self, request, username, title)
o Condition or function under test: put(self, request, username, title)
o Expected Result: If valid, HTTP_Listing created
If invalid, HTTP_400 BAD REQUEST
Output: Json Response HTTP_ 201 Created

o

o Test case description: Delete Request - Delete listing for user
o Input: (self, request, username, title)
o Condition or function under test: delete(self, request, username, title)
o Expected Result: If valid, HTTP_Listing Deleted
If invalid, HTTP_400 BAD REQUEST
Output: Json Response HTTP_DELETED

@)

Database-related Tests

. Setup Test
o] Description: Verifies correct creation of database and initial tables.
o] Input: NONE
o] Function under test: Server setup
o] Expected Result: columbuslist database created with four tables (Users, Listings,
Wishlists, Images)
o] Result: <matches expected>
. addUser() Test
o] Description: Verifies a user can be correctly entered in the Users table.
o] Input: username and password
o] Function under test: addUser
o] Expected Result: User entry created and correctly inserted into Users table
o] Result: <matches expected>

. addListingForUser() Test
Description: Verifies a listing can be corrected entered in the Listings table
Input: title, description, username, price, and contact
Function under test: addListingForUser
Expected Result: Listing entry correctly inserted into Listings table
Result: <matches expected>
. addWishlistListingForUser() Test
Description: Verifies a wishlist listing can be corrected entered in the Wishlists table
Input: listingID and username
Function under test: addWishlistListingForUser
Expected Result: Wishlist entry correctly inserted into Wishlists table
Result: <matches expected>
. addimageForListing() Test
Description: Verifies an image can be added to the Images table
Input: url and listinglD
Function under test: addlmageForListing
Expected Result: Image entry correctly inserted into Images table
Result: <unimplemented functionality>
etListingsForUser() Test
Description: Verifies a specific user’s listings can be retrieved
Input: username
Function under test: getlListingsForUser
Expected Result: all listings with given username attribute returned
Result: <matches expected>
etWishlistListingsForUser() Test
Description: Verifies a specific user’s wishlist listings can be retrieved
Input: username
Function under test: getWishlistListingsForUser
Expected Result: all wishlist listings with given username attribute returned

O O0OO0OO0Oo

O O0OO0OO0Oo

OO0 00KQOO0O0O0O0KQO0OO0OO0O0O0

o Result: <matches expected>

. getimagesForListing() Test
o] Description: Verifies a listing’s images can be retrieved
o] Input: listingID
o] Function under test: getimagesForListing
o] Expected Result: all images with given listinglD attribute returned
o] Result: <unimplemented functionality>

APIl-related Tests

. Endpoint /listings/ tests

o] Reachability test
Description: Verifies /listings/ endpoint is reachable
Input: HTTP Request
Function under test: AllListings
Expected result: No HTTP_404 _NOT_FOUND
Result: <matches expected>

o] GET test
Description: Verifies /listings/ returns all listings
Input: HTTP Request
Function under test: AllListings
Expected Result: All listings returned in JSON format
Result: <matches expected>

o] POST test
Description: Verifies /listings/ creates a listing
Input: HTTP Request, Listing object in JSON format
Function under test: AllListings
Expected Result: New Listing created
Result: <matches expected>

. Endpoint /listings/<username> tests

o] Reachability test
Description: Verifies /listings/<username> endpoint is reachable
Input: HTTP Request, username
Function under test: GetListingsForUser
Expected result: No HTTP_404 _NOT_FOUND
Result: <matches expected>

o] GET test
Description: Verifies /listings/<username> returns all listings belonging to

<username>
Input: HTTP Request, username
Function under test: GetListingsForUser
Expected Result: All listings belonging to <username> returned in JSON format
Result: <matches expected>
. Endpoint /listingsquery/<query>/ tests
o] Reachability test

Description: Verifies /listingsquery/<query>/ endpoint is reachable
Input: HTTP Request, query
Function under test: GetListingsByQuery
Expected result: No HTTP_404 _NOT_FOUND
Result: <matches expected>
o] GET test

Description: Verifies /listingsquery/<query>/ returns all listings where <query> is
contained (case insensitive) in the listing title
Input: HTTP Request, query
Function under test: GetListingsByQuery
Expected result: All listings where <query> is contained (Cl) in the listing title
returned in JSON format
Result: <matches expected>
. Endpoint /listings/<username>/<title>/ tests
o] Reachability test
Description: Verifies /listings/<username>/<title>/ endpoint is reachable
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: No HTTP_404 NOT_FOUND
Result: <matches expected>
o] PUT test
Description: Verifies /listings/<username>/<title>/ updates a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: Given Listing, if found, is correctly updated
Result: <matches expected>
o] DELETE test
Description: Verifies /listings/<username>/<title>/ deletes a listing
Input: HTTP Request, username, title
Function under test: ModifyListingsForUser
Expected result: HTTP_202_NO_CONTENT
Result: <matches expected>
. Endpoint /wishlist/<username>/ tests
o] Reachability test
Description: Verifies /wishlist/<username>/ endpoint is reachable
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: No HTTP_404 _NOT_FOUND
Result: <matches expected>
o] GET test
Description: Verifies /wishlist/<username>/ endpoint returns all wishlist listings
belonging to <username>
Input: HTTP Request, username
Function under test: GetWishlistForUser
Expected result: All wishlist listings belonging to <username> returned in JSON
format
Result: <matches expected>
o] POST test
Description: Verifies /wishlist/<username>/ endpoint can create a wishlist listing
Input: HTTP Request, username, WishlistListing object in JSON format
Function under test: GetWishlistForUser
Expected result: New WishlistListing created
Result: <matches expected>
. Endpoint /users/ tests
o] Reachability test
Description: Verifies /users/ endpoint is reachable
Input: HTTP Request
Function under test: AllUsers
Expected result: No HTTP_404 _NOT_FOUND
Result: <matches expected>
o] GET test
Description: Verifies /users/ returns all users

Input: HTTP Request
Function under test: AllUsers
Expected result: All Users returned in JSON format
Result: <matches expected>

o] POST test
Description: Verifies /users/ can create a user
Input: HTTP Request, User object in JSON format
Function under test: AllUsers
Expected result: New User created
Result: <matches expected>

Listing, Account, and Image class test cases:

Listing class tests:

Constructor

o Input: listing title, price, contact required. Description, Images, Title Tags are optional
inputs

o Condition or function under test: creating listing object

o Expected output: All inputs are properly saved, if a required field is blank there is an error,
if an optional field is blank nothing happens

getTitle()

o input: none

o Condition or function under test: get Title

o expected output: title of listing

o output: allows the title of a listing to be retrieved
changeTitle(str)

o input: new title of listing

o Condition or function under test: change Title

o expected output: confirmation that the title was changed

o output: allows the title of a listing to be changed
getDescription():

o input: none

o Condition or function under test: get Description

o expected output: description of listing

o output: allows the description of a listing to be retrieved
changeDescription(str):

o input: new description of listing

o Condition or function under test: change description

o expected output: confirmation that the description was changed

o output: allows the description of a listing to be changed
getimages()

o input: none

o Condition or function under test: get images

o expected output: image of listing

o output: allows the images of a listing to be retrieved
addimages(Listing[])

o input: list of images to add to listing

o Condition or function under test: add Images

o expected output: confirmation that the images were added

o output: allows images to be added to the listing
removelmages(Listing[])

o input: list of images to remove from listing

o Condition or function under test: remove images

o expected output: confirmation that the images were removed

o output: allows images to be removed from the listing
getPrices()

o input: none

o Condition or function under test: get Prices

o expected output: price of listing

o output: allows the price of a listing to be retrieved
changePrices(str)

o input: price of listing

o Condition or function under test: change prices

o expected output: confirmation that the price was changed

o output: allows the price of a listing to be changed
getContact()

o input: none

o Condition or function under test: get contact

o expected output: contact info for seller of listing

o output: allows the contact of a listing to be retrieved
changeContact(str)

o input: contact info for of listing

o Condition or function under test: change contact

o expected output: confirmation that the contact info was changed

o output: allows the contact of a listing to be changed

getTags()

o input: none

o Condition or function under test: get tags

o expected output: tags of the listing

o output: allows the tags of a listing to be retrieved
addTags(str[])

o input: tags to be added to listing

o Condition or function under test: add Tags

o expected output: confirmation that the tags were added

o output: allows tags to be added to the listing
removeTags(str[])

o input: tags to be added to listing
o Condition or function under test: remove Tags
o expected output: confirmation that the tags were removed

o output: allows tags to be removed from the listing

Account class tests:

Constructor

o Input: Username and password required for account.

o Condition or function under test: constructor for account object

o Expected output: Username and password properly saved

o output: allows the creation of account objects
getUsername()

o input: none

o Condition or function under test: get username

o Expected output: username of account

o output: allows the username of an account to be retrieved
getListings()

o input: none

o Condition or function under test: get Listings

o Expected output: all active listings posted by account

o output: allows the Listings of an account to be retrieved
getWishlist()

o input: none

o Condition or function under test: get Wishlist

o Expected output: All listings in the accounts wishlist

o output: allows the wishlist of an account to be retrieved
addToWishlist(Listing)

o input: listing to be added to wishlist

o Condition or function under test: add to wishlist

o expected output: confirmation that listing was added

o output: allows listings to be added to an accounts wishlist
removeFromWishlist(Listing)

o input: listing to be removed from wishlist

o Condition or function under test: remove from wishlist

o expected output: confirmation that listing was removed

o output: allows listings to be removed from an accounts wishlist
changePassword(str)

o input: new password to account

o Condition or function under test: change password

o output: confirmation password was changed

o output: allows the password of an account to be changed

Image class tests:

Constructor:

o Input: filename of image

o Condition or function under test: Constructor

o Expected output: same filename as input

o output: allows the creation of an Image object

Use Case Diagram:

Add listing to
wishlist

Buyer

Search Listings

Filter through
Listing

Purchase Item
from Listing

Create new
Account Account

»| Delete Account

Seller

Remove Listing

Add/Edit Price

Add/Edit Tags

Add/Edit Title

Create listing

Add/Edit
Description

Add/Edit
Images

Add/Edit
Contact
Information

Feature Descriptions

Admin:

Admin

e As an admin, | want to be able to delete users.
e As an admin, | want to delete listing that violate school policies
e As an admin, | want to be able to edit tags, images, and the description of

listings
As an admin, | want to be able to delete users and listings to ensure that
students follow the student code of conduct.

Buyer

As a potential buyer, | want to be able to view all listings for sale

As a potential buyer, | want to add listings to my wishlist if they interest me
As a potential buyer, | want to view all listings in my wishlist

As a buyer, | want to purchase items from a listing if it is still available

As a buyer, | want to be notified of any price changes for listings in my
wishlist

As a buyer, | want to be able to view relatively high-resolution images of
products to be able to tell the condition of the item.

As a buyer, | want to be able to perform complex search and sort
operations on available listings so | can find exactly what | am looking for.

Seller

e As a user wanting to sell an item, | want to create a listing for my item
e As a seller, | want to edit and customize the title, tags, and description of

my listings

As a seller, | want to post pictures of the item | am selling

As a seller, | want to edit the price of my listing after its posted

As a seller, | want to remove listings | have made

As a seller, | want to choose what contact information is visible to potential
buyers

As a seller, | want to upload images with a relatively high-resolution so
buyers can clearly see what I'm selling.

All users

As a user, | want to log in if | know the correct password
As a user, | want to view my account information

As a user, | want to edit my account information

As a current user, | want to delete my account

e As a new user, | want to create a new account
e As a user, | want to be able to visit this website from any modern browser

(Firefox, Chromium based browsers, etc.) so | don’t have to worry about
browser compatibility.

As a user, | want to be confident that the other users | interact with are not
looking to scam me.

e As a user, | want a reliable website that won’t crash constantly
e As a user, | want to be able to use this website from any modern computer

without issues.

Project Backlog

& CSC 4330 Team E

Migrations

Design API
2 Create dummy f
te List
Create A

Create Iy

r framework

full functional

Start in entati

Start implementation of authentication

menting real AP| hand

gram
ch functionality

filtering functi

© Define Serializers for DjangoRest Framework
© Write Views for our DjangoRest Framework
6 (© Write up APl URLS in DjangoRest
User Token Authentication
[DB] Implement tags
[DB] Implement images
[DB] Implement test cases for tags and images
[Searchy/Filter] filter by tags

[SearchyFilter] filter by username

[Search/Filter] combination filtering listings by title, tags, and username

) a

Merge authentication branch with APl endpoints branch

Connect frontend and backend components for full system testing
Implement functionality of forms

integrate front-end with back-end api

further implement front-end test cases

further refine styling

®
®
®
®
®
®
L]
®
®
®
®
&®
@) cic

implement front-end session storing

Milestone 2

Feature Description:

Buyer

As a potential buyer, | want to be able to view all listings for sale

As a potential buyer, | want to add listings to my wishlist if they interest me
As a potential buyer, | want to view all listings in my wishlist

As a potential buyer, | want to be able to filter and search for listings

As a buyer, | want to purchase items from a listing if it is still available

As a buyer, | want to be notified of any price changes for listings in my
wishlist

Seller

e As a user wanting to sell an item, | want to create a listing for my item
e As a seller, | want to edit and customize the title, tags, and description of

my listings

As a seller, | want to post pictures of the item | am selling

As a seller, | want to edit the price of my listing after its posted

As a seller, | want to remove listings | have made

As a seller, | want to choose what contact information is visible to potential
buyers

All users

As a user, | want to log in if | know the correct password
As a user, | want to view my account information

As a user, | want to edit my account information

As a current user, | want to delete my account

As a new user, | want to create a new account

Class Diagram:

Use Case Diagram:

Listing
Image
fiecstr Backend connection:uySQUConnection
descriptioncst I -flarame:str
images:Listimags)
“aricataat +asduUserusemans,
paserond)Nome
COMBCLE .
o +atdL istingForUsariive, description,
tage:Listisu) UEBIMEME, price, contacty None
andivi D,
+gerTite)su uSBMMaEMe] None
+getimages(; Lsmage] ID)Mene
wgetPrica() foal ko— +QLISENOSF OrUSer USHmEmE] IS
+geICentact sy Kid L
vgeiTags() Lisisy] +getimagasForListng(utng!C) st
I
+changeTite(iwe:su) None
fchangeDescriptinideseriptun sy Nong
+agdimagesiaddimages Lsy .Nene
Ustjsae]l !
Nare -
changePrice(proe fost) Nome
+changeCaontacticontactstr) fone
+add Tags(tags: Listsu]) one
-MWNWRT-F.L#]!.NW e rem
Account -stringf
- +aperationzmng server
-emall:sir string
F :Pacswnrd +soursasrngl
~ligtings: ListListing] ol lectianRequest:sing B
wishistListListing . — Ao s o
- Postidata, cperstion)ISonfesponse : ool
+geiE (ST Mh:ohun -PageCalecton])
s (Lol P DedumenTcas)
+gediishi uaﬂm Pul(data, cperaBonjonone
+atid ToWishlist(Listing)]
+changeEmailemal sty Geilperaiona Suans-string
+changePasswrd| passwoe s
Egrla Egrin
¥ Frontend p—
AF|RequestHandsr + passwered
- - + hendie Subminfeyent: + handeSuomineyest
+ login(usemame: string. passoeed: App Feeart W TMLF Beart L MLF ¥
string) eid eid
+ createwishiis(ising/D: suing) + Router. BrowserRouter
+ ankdListing(ftam: ListngProps): . &
string I
+ dalgnelstingistirgiD: sEing)
+ addwishististingD: swing)
+ delate'/ishistisengiD: swing) ‘ S=srchBar Footer
+ getProfisfusemans: suing)
. i H
Home Erafie
noes - — — — - - T Iy
acintertacess
ListingPraps oot Listing
E 3
+ e st F
+ description: TG .
+ - srryg
+ ahen oo ReactComponent-FPrapsintenace,
ﬂmw-*m[::ﬂ-‘q I Statelmeraces
+ g vy ameal state: Stateimarisce
H A i L
Node.js React.js Progsintarice) mesc Compsnant
+ setState(state: Stateinerace
“winid

+ renden() ReaciElement

Add listing to
wishlist

Buyer

Search Listings

Filter through
Listing

Purchase Item
from Listing

Access
Account

Create new
Account

Delete Account

Seller

Remove Listing

Add/Edit Price

Add/Edit Tags

Add/Edit Title

Create listing

Add/Edit
Description

Add/Edit
Images

Add/Edit
Contact
Information

Entity-Relationship Diagram:

Users Images
username varchar(255) url varchar(255)
password varchar(255) - listinglD varchar(255)
name varchar(255)
phoneNumber varchar(255)
i ___ — e Listings
[hlists listinglD varchar(255)
username varchar(255) —|—_/_, fite varchar(255)
IstingID vaichar(255) description varchar(255)
username varchar(255)
price float
contact varchar(255)

Preliminary Database Test Cases:

Database-related Tests

= Setup Test

o Input: NONE

o Expected Result: columbuslist database created with four tables (Users, Listings,

Wishlists, Images)

+ addUser{) Test

o Input: username and password

o Expected Result: User entry correctly inserted into Users table
+ addListingForUser() Test

o Input: title, description, username, price, and contact

o Expected Result: Listing entry correctly inserted into Listings table
+ addWishlistListingForUser() Test

o Input: listinglD and username

o Expected Result: Wishlist entry correctly inserted into Wishlists table
+ addimageForListing() Test

o Input: url and listinglD

o Expected Result: Image entry correctly inserted into Images table
s petlistingsForUser() Test

o Input: username

o Expected Result: all listings with given username attribute returned
+ petWishlistListingsForUser() Test

o Input: username

o Expected Result: all wishlist listings with given username attribute returned
+ petlmagesForlListing() Test

o Input: listinglD

o Expected Result: all images with given listinglD attribute returned

Preliminary Django Rest framework Server Test Cases:

o Test case description: Authentication Login
o Input: Valid username and password
o Condition or function under test: IsAuthenticated(username, password)
o Expected Result: Access Granted or Access Denied
o Output: Confirmation Json Response

e Test case description: Page Request
o Input: Valid username and password
o Condition or function under test: get(self, request)
o Expected Result: Json Response if valid
Bad request, if invalid
Output: Json Response

o

o Test case description: Page Request - View listing for user
o Input: (self, request, username)
o Condition or function under test: get(self, request)
o Expected Result: Json Response if valid
Bad request, if invalid
Output: Json Response

e}

o Test case description: Post Request - Create listing for user
o Input: (self, request, username, title)
o Condition or function under test: Post(self, request, username, title)
o Expected Result: If valid, Json Response HTTP 201 Created
If invalid, Json Response HTTP_400 BAD REQUEST
o Output: Json Response HTTP_201 Created

o Test case description: Put Request - Edit listing for user
o Input: (self, request, username, title)
o Condition or function under test: put(self, request, username, title)
o Expected Result: If valid, HTTP_Listing created
If invalid, HTTP_400 BAD REQUEST
Output: Json Response HTTP 201 Created

o

® Test case description: Delete Request - Delete listing for user
o Input: (self, request, username, title)
o Condition or function under test: delete(self, request, username, title)
o Expected Result: If valid, HTTP_Listing Deleted

If invalid, HTTP_400 BAD REQUEST
0o Output: Json Response HTTP_ DELETED

Preliminary Frontend Test Cases

e Test case description:Sign Up
o Input: Valid email, username, and password
o Condition or function under test:Sign Up
o Expected Output:Confirm account was created and information reflects what was
inputted
e Test case description:Sign In
o Input: Valid email or username and password
o Condition or function under test:Sign In
o Expected Output: Confirm user was signed in and info populates properly on profile page.
e Test case description:Create Listing
o Input: Listing parameters
o Condition or function under test:Create Listing
o Expected Output: Confirm listing was created and info populates properly on listing page
e Test case description:Edit Listing
o Input: Listing changes
o Condition or function under test:Edit listing
o Expected Output: Confirm listing was updated and info populates properly on listing page
o Test case description:Search
o Input: keyword
o Condition or function under test:Search
o Expected Output: Listings containing the keyword
e Test case description:Change Search Parameters
o Input: New search parameters
o Condition or function under test:Change Search Parameters
o Expected Output: Updated search results
e Test case description:Edit Profile
o Input: New profile settings
o Condition or function under test:Edit Profile
o Expected Output: Confirm profile settings updated and info populates properly on profile
page
e Test case description:Redirects
o Not logged in
m Input: Home page URL
Condition or function under test:Redirects not logged in
Expected Output: No search bar, sign in and sign up buttons
Other Input: Profile page URL or search URL
Other Expected Output: Redirect to sign in
Other Input: Contact Us URL, Sign In URL, or Sign Up URL
Other Expected Output: No redirect

(e]

Logged In

Input: Home page URL

Condition or function under test:Redirects logged in

Expected Output: Search bar and no sign in/up buttons

Other Input: profile page URL

Other Expected Output: Page populated with specified user info
Other Input: Search page

Other expected Output: results based on search parameters

Milestone 1

User Stories:

Buyer

Epic: As a Columbus University student, | want to buy items from fellow students so that | can
get cheap stuff locally and with accountability.

e As a ColumbusList buyer, | want the ability to save listings to a wishlist for quick access at a later
time.
As a user with a wishlist, | want to be notified of any price changes to listings in my wishlist.
As a buyer, | want to be able to search listings for specific terms so that | can look for particular
items.

e As abuyer, | want to be able to see recent listings when | go on the site so that | can easily see if
something | want has been posted to be the first to try to purchase it.

e As a buyer, | want to be able to filter my searches by price and tag so that | can minimize time
wasted looking at irrelevant listings and find what | want more quickly.

Seller

Epic: As a Columbus University student, | want to sell items to fellow students so | can get rid of
things | don’t want and make money safely.

e As a Columbus University student looking to sell items and services, | want the ability to add a
sell listing advertising my item or service.

e As a user making a sell listing, | want the ability to add a title to my listing to quickly describe the
item or service | want to sell.

e As a user making a sell listing, | want the ability to add a description to my listing to describe in
detail the item or service | want to sell.

e As auser making a sell listing, | want the ability to add images to my listing to visually advertise
my item or service.

e As auser making a sell listing, | want the ability to add a price to my listing to inform potential
buyers of my required compensation.

e As a user making a sell listing, | want the ability to add contact information to my listing so that
potential buyers can let me know of their interest in my item or service.

e As a user making a sell listing, | want the ability to add tags to my listing to improve the visibility
of my listing and help potential buyers find what they are looking for quicker.

e As a ColumbusList user making a listing, | want to be able to edit all aspects of my listing after it
has been posted.

System architecture:

Platiarm
Backend [Djanga)
Databasentanager "I wmysaL
{Madels) - Database

| rnm

1 daia
Fonwand reguesiia
ADDOEriaee ViEs
Sener | ClieniHandler | Djangs REST
[hews) (urLsy ™ Framework
HTTF Regponos TH'I'I'F'FEEI:]UE:I
L i
Frontend [Node js)
React Rowter
Pl Response
Clien AL Fromend
ol 1L ' v Dy a2
APIReguest Doty
* AFPI data.
AP Handger
Ul B Campoangni
Components | React |s

T eact Companeant

Project and Sprint Backlogs

& CSC 4330 Team E

A SprintBacklog '+

) Create User Stories
) Create Basic System Architecture
9 Create SQL database
© Create Template Django REST Framework Project
) Add Node.js and Reactjs project in subfolder
Design API
9 Create basic database component
) Create basic frontend router component
) Create basic Ul components (search bar/filters, listing, profile display, nav bar)
) Create dummy frontend API handler to test Ul components
) Create class diagram
9 Create ER diagram for database
9 Create styling for basic Ul components
) Create additional Ul components and subcomponents
Design documents
9 Create Requirements Specification documents
) Design frontend test plans
) Design backend test plans
O Create use ¢

Initiate Django Rest Framework

) Django Rest Framework - Data Base Migrations

® Modify MVT and eliminate Templates

ializers for DjangoRest Framework

ializers for DjangoRest Framework
Write Views for our DjangoRest Framework
Create Listing Class

Create Account Class

Write up APl URLS in DjangoRest

Create Image Class

v

Create u diagram

Pagination in DRF

Add end-points for our framework
Flesh out Ul to have full functionality
Refine styling

Start implementation of test cases
Start implementation of authentication
Start implementing real API handler
Refine test cases

Update class diagram

Create data flow diagram

6 G

© Implement search functionality
© Implement search filtering functionality
() Implement listing preview

© Implement listing page

(© Implement contact form

) Implement sign in form

© Implement sign up form

©® Implement profile page

A Sprint1 v [Sprint2

() Create SQL database

© Create Template Django REST Framework Project

© Add

Node js and Reactjs project in subfolder
I5Se COm| DOHEI‘IT
ntend router component
components (search bar/filters, listing, profile display, nav bar)
lass diagram
or database

sic Ul components

4 © Create additional Ul components and subcomponents

5 © Design documents

6 (© Create Requirements Specification documents

7 © Design frontend test plans

8 (

Tech

->

2 200 28 27

vl

) Design backend test plans

details:

The DatabaseManager interacts with a MySQL database. MySQL was chosen as the
database technology due to its fast performance, programmer-friendly connection
capability in Python through the mysqgl.connection framework, and external access
capability for easy verification and modification of database state. Using this database,
we can store the accounts of ColumbusList users, their listings, their wishlist listings, and
the images associated with those listings.

MySQL - A SQL database management system for implementing a relational database.
MySQL Connector/Python - A self contained Python driver for communicating with
MySQL servers.

Django - A python web framework based on the model-view-template architecture.
Django REST Framework - A python toolkit for building web APIs in Django.

React.js - A declarative, component-based front-end library/framework for providing
views based on application state and which is meant to be integrable into any project.
React Router - A client side router for use with React.js.

Node.js - A JavaScript runtime built on Chrome’s V8 JavaScript Engine. Used for
development of Frontend.

TypeScript - Strict syntactical superset of JavaScript and adds optional static typing to
the language. TypeScript is designed for the development of large applications and
trans-compiles to JavaScript.

=> Sassy CSS - CSS language extension
- Font Awesome - Icon font
Tools:

-> Google Drive - Online storage for we use for storing milestone deliverables

= Discord - VoIP, direct messaging, and content distribution platform we use for sharing
information and virtual meetings/correspondence

-> Figma - Web-based design software we use for frontend design and whiteboarding

=> Lucid Chart - Online tool for creating diagrams such as ER, use case, and class

-> GitHub - Remote service for software development and version control we use for
storing code repository

-> VS Code - Editor/IDE used for development

